A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Wednesday, December 13, 2017
Abstract-Comparison of digital beamforming algorithms for 3-D terahertz imaging with sparse multistatic line arrays
Bessem Baccouche, Patrick Agostini, Falco Schneider, Wolfgang Sauer-Greff, Ralph Urbansky, Fabian Friederich
https://www.adv-radio-sci.net/15/283/2017/
In this contribution we compare the back-projection algorithm with our recently developed modified range migration algorithm for 3-D terahertz imaging using sparse multistatic line arrays. A 2-D planar sampling scheme is generated using the array's aperture in combination with an orthogonal synthetic aperture obtained through linear movement of the object under test. A stepped frequency continuous wave signal modulation is used for range focusing. Comparisons of the focusing quality show that results using the modified range migration algorithm reflect these of the back-projection algorithm except for some degradation along the array's axis due to the operation in the array's near-field. Nevertheless the highest computational efficiency is obtained from the modified range migration algorithm, which is better than the numerically optimized version of the back-projection algorithm. Measurements have been performed by using an imaging system operating in the W frequency band to verify the theoretical results.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment