http://www.sciencedirect.com/science/article/pii/S0030401817308684
A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright–dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8–1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.
A metamaterial analogy of tunable electromagnetically induced transparency (EIT) is theoretically investigated in terahertz regime. The proposed metamaterial consists of vertical gold strips and horizontal graphene wires, which perform as bright elements and dark elements, respectively. The EIT-like phenomenon can be induced by bright–dark mode coupling on condition of structural lateral displacement. Numerical result reveals that the EIT-like effect remains noticeable with a wide range of incidence polarization angles. Most importantly, by manipulating gate voltages, the EIT window can be dynamically controlled without refabricating the structure. The amplitude modulation depth can reach 81%, 79%, and 68% respectively at three characteristic frequencies as Fermi energy changes in the scope of 0.8–1.0 eV. Furthermore, a sensitivity of 0.95 THz per refractive index unit (RIU) is realized varying the refractive index in the surrounding medium. This structure provides potential applications for detectors, sensors, and modulators.
No comments:
Post a Comment