A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Friday, September 29, 2017
Abstract-Terahertz nano probing of semiconductor surface dynamics
Geunchang Choi, Young-Mi Bahk, Taehee Kang, Yoojin Lee, Byung Hee Son, Yeong Hwan Ahn, Minah Seo, and Dai-Sik Kim
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b03289
Most semiconductors have surface dynamics radically different from its bulk counterpart due to surface defect, doping level, and symmetry breaking. Due to the technical challenge of direct observation of the surface carrier dynamics, however, experimental studies have been allowed in severely shrunk structures including nanowires, thin films, or quantum wells where the surface-to-volume ratio is very high. Here, we develop a new type of terahertz (THz) nano probing system to investigate the surface dynamics of bulk semiconductors, using metallic nano gap accompanying strong THz field confinement. We observed that carrier lifetimes of InP and GaAs dramatically decrease close to the limit of THz time resolution (~1 ps) as the gap size decreases down to nano scale, and that they return to their original values once the nano gap patterns are removed. Our THz nano probing system will open up pathways towards direct, and nondestructive measurements of surface dynamics of bulk semiconductors
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment