A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Saturday, September 23, 2017
Abstract-Effect of intense terahertz laser and magnetic fields on the binding energy and the transition energy of shallow impurity in a bulk semiconductor
Weiyang Wang, Lei Xu, Bo Wu, Sha Zhang, Xiangfei Wei
http://www.sciencedirect.com/science/article/pii/S092145261730368X
The influences of intense terahertz laser and magnetic fields on shallow-donor states in GaAs bulk semiconductors in the Faraday geometry are studied theoretically in the framework of the effective-mass approximation. The interaction between the laser field and the semiconductor is treated nonperturbatively by solving analytically the time-dependent Schrödinger equation in which the two external fields are included exactly. In the nonresonant region, we have found that the binding and transition energies decrease with increasing laser-field intensity or decreasing laser-field frequency, and the binding energy increases with magnetic field. For relatively low radiation levels, the transition energy first slowly decreases with increasing magnetic field, but after a critical value, it rapidly increases with increasing magnetic field. However, it slowly decreases with magnetic field when the laser-field intensity is strong enough. Furthermore, in the vicinity of the resonant regime, the oscillatory behaviours of the binding and transition energies with laser-field frequency and magnetic field are observed. These results obtained indicate the possibility of manipulating the shallow impurity states in semiconductor by changing the intense laser-field frequency and intensity and the magnetic field, which gives a new degree of freedom in semiconductor device application.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment