A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Saturday, April 29, 2017
Abstract-Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial
Koijam Monika Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury, and Gagan Kumar
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-9-10484
We analyze plasmon induced transparency (PIT) in a planar terahertz metamaterial comprising of two C-shaped resonators and a cut-wire. The two C-shaped resonators are placed alternately on both sides of the cut-wire such that it exhibits a PIT effect when coupled with the cut wire. We have further shown that the PIT window is modulated by displacing the C-shaped resonators w.r.t. the cut-wire. A lumped element equivalent circuit model is reported to explain the numerical observations for different coupling configurations. The PIT effect is further explored in a metamaterial comprising of a cross like structure and four C-shaped resonators. For this configuration, the PIT effect is studied for the incident light polarized in both x and y directions. It is observed that such a structure exhibits equally strong PIT effects for both the incident polarizations, indicating a polarization independent response to the incident terahertz radiation. Our study could be significant in the development of slow light devices and polarization independent sensing applications.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment