Monday, March 14, 2016

Abstract-[Experimental Study of PMI Foam Composite Properties in Terahertz]



Xing LYCui HLShi CCHan XHZhang ZYLi WMa YTZheng YZhang SN

http://www.ncbi.nlm.nih.gov/pubmed/26964202


Polymethacrylimide (PMI) foam composite has many excellent properties. Currently, PMI is heat-resistant foam, with the highest strength and stiffness. It is suitable as a high-performance sandwich structure core material. It can replace the honeycomb structure. It is widely used in aerospace, aviation, military, marine, automotive and high-speed trains, etc. But as new sandwich materials, PMI performance testing in the THz band is not yet visible. Based on the Terahertz (THz) time-domain spectroscopy technique, we conducted the transmission and reflection experiments, got the time domain waveforms and power density spectrum. And then we analyzed and compared the signals. The MATALB and Origin 8. 0 was used to calculate and obtain the transmittance (transfer function), absorptivity Coefficient, reflectance and the refractive index of the different thickness Degussa PMI (Model: Rohacell WF71), which were based on the application of the time-domain and frequency-domain analysis methods. We used the data to compared with the THz refractive index and absorption spectra of a domestic PMI, Baoding Meiwo Technology Development Co. , Ltd. (Model: SP1D80-P-30). The result shows that the impact of humidity on the measurement results is obvious. The refractive index of PMI is about 1. 05. The attenuation of power spectrum is due to the signal of the test platform is weak, the sample is thick and the internal scattering of PMI foam microstructure. This conclusion provides a theoretical basis for the THz band applications in the composite PMI. It also made a good groundwork for THz NDT (Non-Destructive Testing, NDT) technology in terms of PMI foam composites.

No comments: