A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Monday, February 8, 2016
Abstract-Possible light-induced superconductivity in K3C60 at high temperature
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature16522.html
The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity1. Nonlinear excitation2, 3 of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc(refs 4, 5, 6). This effect was accompanied by the disruption of competing charge-density-wave correlations7, 8, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. These same signatures are observed at equilibrium when cooling metallic K3C60 below Tc (20 kelvin). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this as a possible explanation of our results.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment