A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Friday, October 9, 2015
Abstract-Relativistic Doppler frequency up-conversion of terahertz pulses via reflection from photo-induced plasma fronts in solid-state media
Mark D. Thomson; Fanqi Meng; Hartmut G. Roskos
http://spie.org/Publications/Proceedings/Paper/10.1117/12.2186752
We have recently proposed and investigated the use of the relativistic Doppler reflection to up-shift the frequency of incident THz pulses, where the reflecting boundary is realized by a charge-carrier plasma front generated by a counter-propagating optical pump pulse in a semiconductor medium. In light of experimental results with high-resistivity silicon as the medium, here we employ numerical simulations to examine the effects of (i) the scattering time and (ii) pre-excitation of the plasma before the main pulse, which both can have a profound impact on the frequency up-conversion. These results also suggest that the initial effective Drude scattering time in silicon (before thermalization) may be below 10 femtoseconds, exemplifying the use of the Doppler reflective geometry as a novel probe of initial charge-carrier dynamics.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment