Thursday, September 19, 2013

Abstract-Semiconductor detectors and focal plane arrays for far-infrared imaging


The detection of far-infrared (far-IR) and sub-mm-wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid nitrogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics.
Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging systems in the next decades. This paper presents progress in far-IR and sub-mm-wave semiconductor detector technology of focal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real-time uncooled THz focal plane arrays such as Schottky barrier arrays, field-effect transistor detectors, and microbolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolometer arrays are considered.

No comments: