Federico Valmorra *†, Giacomo Scalari *†, Curdin Maissen †, Wangyang Fu ‡, Christian Schönenberger‡, Jong Won Choi §, Hyung Gyu Park §, Mattias Beck†, and Jérôme Faist †
We propose an hybrid graphene/metamaterial device based on terahertz electronic split-ring resonators directly evaporated on top of a large-area single-layer CVD graphene. Room temperature time-domain spectroscopy measurements in the frequency range from 250 GHz to 2.75 THz show that the presence of the graphene strongly changes the THz metamaterial transmittance on the whole frequency range. The graphene gating allows active control of such interaction, showing a modulation depth of 11.5% with an applied bias of 10.6 V. Analytical modeling of the device provides a very good qualitative and quantitative agreement with the measured device behavior. The presented system shows potential as a THz modulator and can be relevant for strong light–matter coupling experiments.
No comments:
Post a Comment