We demonstrate a high energy throughput, modular optical laser pulse shaping technique for generating tunable, narrowband, terahertz radiation from the surface of InAs. We achieve a frequency selectivity (Δf/f) of 0.10 at 1.18 THz and demonstrate an energy throughput of up to 98% using two etalons to create a sequence of optical pulses. In contrast with previously reported schemes, our technique does not rely on interferometry or involve diffractive optical elements, making it robust and relatively inexpensive to implement. This technique can be expanded with additional etalons in order to achieve greater frequency selectivity without sacrificing efficiency.
© 2013 American Institute of PhysicsA repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment