A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Monday, December 19, 2011
Terahertz Radar “Maps” Targets In Long-Distance Pat-Down
http://www.mwrf.com/Article/ArticleID/23809/23809.html
Due to concerns over privacy, efficiency, and accuracy, security screening at airports and other public places is constantly being improved. At NASA’s Jet Propulsion Laboratory, a 675-GHz imaging radar with the potential to perform such screenings from a distance has been proposed by Ken B. Cooper, Robert J. Dengler, Nuria Llombart, Bertrand Thomas, Goutam Chattopadhyay, and Peter H. Siegel. This radar can conduct rapid “frisk” or “pat-down” types of searches of persons as far away as 25 m via a focused, low-energy terahertz beam.
The team picked the 675-GHz band because it benefits from low atmospheric attenuation. At the same time, it provides sufficiently high spatial resolution for a favorable tradeoff between antenna size and standoff range. To achieve sub-centimeter-range resolution, the radar relies on the frequency-modulated-continuous-wave (FMCW) radar technique in combination with a bandwidth of nearly 30 GHz. To optimize the radar’s range resolution, a software-calibration procedure compensates for signal distortion from radar waveform nonlinearities.
The radar achieves low-noise, high-dynamic-range detection with a combination of a heterodyne RF architecture, low-noise chirp source, and 675-GHz transceiver. With its quasi-optical design, it allows low-distortion, fast beam scanning for single-pixel imaging. The portable laboratory prototype operates in FMCW mode over a 28.8-GHz bandwidth, currently centered at 676.7 GHz. With peak output power below 1 mW, it is well within health safety limits. See “THz Imaging Radar for Standoff Personnel Screening,” IEEE Transactions On Terahertz Science And Technology, Sept. 2011, p. 169.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment