Thursday, February 23, 2017

Abstract-Hybrid 3-D Printing Technology for Tunable THz Applications

William J. Otter,  Stepan Lucyszyn,

In recent years, additive manufacturing has experienced rapid growth, due to its inherent capabilities for creating arbitrary 3-D structures, accessibility, and associated low manufacturing costs. This paper first reviews the state of the art in 3-D printing for terahertz (THz) applications and identifies the critical features required for such applications. The future potential for this technology is demonstrated experimentally with the first 3-D-printed, optically controlled THz IQ vector modulator. Here, miniature high-resistivity silicon implants are integrated into metal-pipe rectangular waveguides. The 3-D-printed split-block assembly also houses two packaged infrared laser diodes and a heat sink. The measured performance of a proof-of-principle 4-quaternary amplitude modulation (4-QAM) vector modulator that operates up to 500 GHz is reported. This new hybrid 3-D printing THz technology, which combines semiconductor devices with potentially low-cost, high-performance passive guided-wave structures represents a paradigm shift and may prove to be an ideal solution for implementing affordable transceivers in future ubiquitous THz applications.

No comments: