Tuesday, June 25, 2013

Laser guided codes advance single pixel terahertz imaging



A new method for single pixel terahertz (THz) imaging developed by Boston College researchers uses a set of instructions delivered by a laser beam to tune THz waves in order to produce new types of THz images. During the imaging method devised by the team, THz waves pass through an object (a); then they strike a silicon semiconductor (b) given specific instructions about how to sample the image; that data is passed along in order to digitally reconstruct an image (c) of the original object in just a few seconds.
(Photo Credit: Claire M. Watts, Boston College)

http://www.sciencecodex.com/laser_guided_codes_advance_single_pixel_terahertz_imaging-114660
Efforts to overcome the challenges of mechanics, cost and image clarity are viewed as a crucial step in efforts to tame the THz gap since imaging and sensing at this frequency holds the potential for advances in areas as divergent as chemical fingerprinting, security imaging of hidden weapons, even real-time skin imaging to promote simple detection of skin cancer.
Central to this challenge is the development of a technology to create efficient masks – similar to the aperture of a camera -- capable of tuning THz radiation in order to produce clear images in just a few seconds.
Willie Padilla and graduate students David Shrekenhamer and Claire M. Watts report their new single pixel imaging method centers on what they describe as a "coded aperture multiplex technique" where a laser beam and electronic signals are used to send a set of instructions to a semiconductor so it can guide the reproduction of the image of an object after THz waves have passed through it.
A digital micro-mirror device encodes the laser beam with instructions that direct certain segments of the silicon mask to react and allow a selected sample of the THz waves to pass freely through, consistent with the image pattern. The combination of optical instructions and the reaction of the semiconductor create a THz spatial light modulator, the team reports. Functioning like the aperture of a conventional camera, the modulator then guides the digital reconstruction of the entire image based on a broad sampling of THz waves that have passed through the object.
The team's experiments found the method could produce masks of varying resolutions, ranging from 63 to 1023 pixels and acquire images at speeds up to .5 Hz, or about 2 seconds. The early findings "demonstrate the viability of obtaining real-time and high-fidelity THz images using an optically controlled SLM with a single pixel detector," the team concluded.
Padilla said the findings have spurred additional research by his lab into ways to further control THz waves, such as by using the intricate patterns of an engineered metamaterial to further manipulate terahertz waves to create images faster and with increased efficiency.

No comments: