Showing posts with label Alexei V. Balakin. Show all posts
Showing posts with label Alexei V. Balakin. Show all posts

Monday, March 29, 2021

Metasurfaces for manipulating terahertz waves

 


The associated THz responses include focusing, holograms, polarization modulation, special beams and active controlling. Credit: Xiaofei Zang, Bingshuang Yao, Lin Chen, Jingya Xie, Xuguang Guo, Alexei V. Balakin, Alexander P. Shkurinov, and Songlin Zhuang


https://phys.org/news/2021-03-metasurfaces-terahertz.html

by 

THz waves have a plethora of applications ranging from biomedical and medical examinations, imaging, environmental monitoring, to wireless communications, because of abundant spectral information, low photon energy, strong penetrability, and shorter wavelength. THz waves with technological advances not only determined by high-efficiency sources and detectors but also decided by a variety of high-quality THz components/functional devices. However, traditional THz devices should be thick enough to realize the desired wave-manipulating functions, hindering the development of THz integrated systems and applications. Although metamaterials have shown groundbreaking discoveries due to tunable electric permittivity and magnetic permeability of a meta-atom, they are limited by technical challenges of fabrication and high loss of the metal-based unit cell.

In a new paper published in Light: Advanced Manufacturing, a team of scientists, led by Professor Songlin Zhuang from Terahertz Technology Innovation Research Institute, University of shanghai for Science and Technology, and co-workers have summarized recent advancements of metasurfaces for the manipulation of THz waves. These ultra-compact devices with unusual functionalities render  devices very attractive for applications such as imaging, encryption, information modulation and THz communications.

Actually, metasurfaces typically consist of planar antennas that enable predesigned EM responses. The antennas are made of metals or traditional high-refractive index dielectrics that can be easily fabricated based on standard fabrication processes. In addition, metasurfaces with functionality in manipulating EM waves are dependent on abrupt phase changes at planar antenna interfaces, and thus the thickness of metasurfaces is much thinner than the incident wavelength. Metasurfaces can locally control the wavefront of EM waves at subwavelength resolution, leading to various practical applications such as metalenses, waveplates, vortex beam generators, beam steering and holograms. The ultrathin nature of metasurfaces, ease of fabrication, and subwavelength resolution in manipulation of EM waves make metasurfaces ideal candidates for THz  miniaturization (ultra-compact THz devices) and system integration.

The metasurface-based approach for manipulatig THz waves enables remarkable contributions in designing ultra-thin/ultra-compact and tunable THz components. The main advantages/contributions of THz metasurfaces can be concluded as follows: (1) THz components with reduced size: The functionalities of focusing, OAM, and polarization conversion realized by metasurfaces can be traditionally obtained by using a THz lens, helical phase plate, and half-wave (or quarter-wave) plate, respectively; (2) THz components with multiple functions: The traditional THz devices, e.g. THz lenses, waveplates, etc, always show a single function. Metasurfaces not only provide a flexible platform to realize ultra-thin/ultra-compact THz devices with single function, but also enable the unprecedented capability in designing multifunctional THz devices. (3) THz components with tunable function: Metasurfaces combined with VO2, graphene, etc, open a new avenue for designing THz components with active functions.

In conclusion, metasurfaces with planar structures can locally modify the wavefront of THz waves at subwavelength resolution. Metasurfaces not only provide an ultra-compact platform for manipulating the wavefront of THz waves, but also generate a plethora of applications that are difficult to achieve with conventional functional devices. As an overview, the recent developments of metasurfaces for manipulating THz waves were presented in this paper, and this progress report may open a new avenue to design ultra-thin or ultra-compact THz  and systems.



Tuesday, March 23, 2021

Metasurfaces for manipulating terahertz waves


                                              
LIGHT PUBLISHING CENTER, CHANGCHUN INSTITUTE OF OPTICS, FINE MECHANICS AND PHYSICS, CAS

The associated THz responses include focusing, holograms, polarization modulation, special beams and active controlling.

CREDIT

by Xiaofei Zang, Bingshuang Yao, Lin Chen, Jingya Xie, Xuguang Guo, Alexei V. Balakin, Alexander P. Shkurinov, and Songlin Zhuang

https://www.eurekalert.org/pub_releases/2021-03/lpcc-mfm032221.php


THz waves have a plethora of applications ranging from biomedical and medical examinations, imaging, environment monitoring, to wireless communications, because of the abundant spectral information, low photon energy, strong penetrability, and shorter wavelength. THz waves with technological advances not only determined by the high-efficiency sources and detectors but also decided by a variety of the high-quality THz components/functional devices. However, traditional THz devices should be thick enough to realize the desired wave-manipulating functions, hindering the development of THz integrated systems and applications. Although metamaterials have been shown groundbreaking discoveries due to the tunable electric permittivity and magnetic permeability of a meta-atom, they are limited to technical challenges of fabrication and high loss of the metal-based unit cell.

In a new paper published in Light: Advanced Manufacturing, a team of scientists, led by Professor Songlin Zhuang from Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology, and co-workers have summarized the recent advancements of metasurfaces for the manipulation of THz waves. These ultra-compact devices with unusual functionalities render metasurface devices very attractive for applications such as imaging, encryption, information modulation and THz communications.

Actually, metasurfaces typically consist of planar antennas that enable predesigned EM responses. The antennas are made by metals or traditional high-refractive index dielectrics that can be easily fabricated based on the standard fabrication process. In addition, metasurfaces with the functionality in manipulating EM waves are dependent on the abrupt phase changes at planar antenna interfaces, and thus the thickness of metasurfaces is much thinner than the incident wavelength. Metasurfaces can locally control the wavefront of EM waves at subwavelength resolution, leading to various practical applications such as metalens, waveplates, vortex beam generators, beam steering and holograms. The ultrathin nature of metasurfaces, the ease of fabrication, and the subwavelength resolution in manipulating of EM waves make metasurfaces ideal candidates for THz device miniaturization (ultra-compact THz devices) and system integration.

The metasurface-based approach for manipulatig THz waves enables remarkable contributions in designing ultra-thin/ultra-compact and tunable THz components. The main advantages/contributions of THz metasurfaces can be concluded as follows: (1) THz components with reduced size: The functionalities of focusing, OAM, and polarization conversion realized by metasurfaces can be traditionally obtained by using a THz lens, helical phase plate, and half-wave (or quarter-wave) plate, respectively; (2) THz components with multiple functions: The traditional THz devices, e.g. THz lenses, waveplates, etc..., are always show a single function. Metasurfaces not only provide a flexible platform to realize ultra-thin/ultra-compact THz devices with single function, but also enable the unprecedented capability in designing multifunctional THz devices. (3) THz components with tunable function: Metasurfaces combined with VO2, graphene, etc, open a new avenue for designing THz components with active functions.

In conclusion, metasurfaces with planar structures can locally modify the wavefront of THz waves at subwavelength resolution. Metasurfaces not only provide an ultra-compact platform for manipulating the wavefront of THz waves, but also generate a plethora of applications that are difficult to achieve with conventional functional devices. As an overview, the recent developments of metasurfaces for manipulating THz waves were presented in this paper, and this progress report may open a new avenue to design ultra-thin or ultra-compact THz functional devices and systems.


Saturday, June 8, 2019

Abstract-Terahertz wave generation from liquid nitrogen




Alexei V. Balakin, Jean-Louis Coutaz, Vladimir A. Makarov, Igor A. Kotelnikov, Yan Peng, Peter M. Solyankin, Yiming Zhu, and Alexander P. Shkurinov


Fig. 1. Experimental setup. M–dielectric mirror; MM–metallic mirror; BS–beam splitter; λ/2–half-wave phase plate; L–lens; PM–off-axis parabolic mirror; BBO–β-barium borate crystal.
https://www.osapublishing.org/prj/abstract.cfm?uri=prj-7-6-678

We present the results of research carried out for the first time, to the best of our knowledge, on the generation of terahertz radiation under the action of “single-color” and “dual-color” high-power femtosecond laser pulses on liquefied gas–liquid nitrogen. Our experimental results supported by careful theoretical interpretation showed clearly that under femtosecond laser radiation, liquid and air emit terahertz waves in a very different way. We assumed that the mobility of ions and electrons in liquid can play an essential role, forming a quasi-static electric field by means of ambipolar diffusion mechanism.
© 2019 Chinese Laser Press

Monday, September 24, 2018

Abstract-“Terhune-like” transformation of the terahertz polarization ellipse “mutually induced” by three-wave joint propagation in liquid



Alexei V. Balakin, Sergey V. Garnov, Vladimir A. Makarov, Nikolay A. Kuzechkin, Petr A. Obraztsov, Peter M. Solyankin, Alexander P. Shkurinov, and Yiming Zhu

https://www.osapublishing.org/ol/fulltext.cfm?uri=ol-43-18-4406&id=396882

In this Letter, we show experimentally for the first time, to the best of our knowledge, the possibility to observe the effect of polarization mutual action of three elliptically polarized waves, with one of them at terahertz frequency, when they propagate in the isotropic nonlinear medium. When three light pulses are propagated at frequencies ω2ω, and ωTHz through liquid nitrogen, we observed the rotation of the ellipse main axis and the ellipticity change. We have shown that this effect is very well described theoretically in the framework of a physical approach analogous to the self-rotation of the polarization ellipse first described in 1964 by Maker et al., but expanded for the case of multi-frequency interaction.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Tuesday, February 7, 2017

Abstract-Abstract-Interaction of High-Intensity Femtosecond Radiation With Gas Cluster Beam: Effect of Pulse Duration on Joint Terahertz and X-Ray Emission



 Andrey B. Savel’ev 

http://ieeexplore.ieee.org/document/7740088/

This paper studies the phenomenon of joint generation of terahertz (THz) and X-ray radiation in the argon nanocluster jet under the action of high-power femtosecond laser pulse in both the single-color and dual-color regimes. It was discovered that in a gas cluster beam the pulse duration affects the properties of THz and X-ray emission differently. For the same given total energy of optical pulse in the dual-color excitation regime of cluster medium, more than a five times increase of THz radiation power was observed in comparison with the single-color regime, while the conversion efficiency to the argon X-ray K-line reached 7 × 10-6 and remained unchanged. The possibility of separation of contributions of different beam components into the THz signal was demonstrated experimentally, using contributions from clusters and nonclustered gas as an example. We suggest an interpretation of experimental results based on a theoretical model of cluster ionization that self-consistently predicts the level and dynamics of ionization and electron temperature in the clusters.