Showing posts with label University of California at Los Angeles. Show all posts
Showing posts with label University of California at Los Angeles. Show all posts

Monday, March 9, 2015

Is Terahertz a Communication Waste Land or a Vibrant Frontier?


March 30, 2015
3:00-4:00pm
Davis Auditorium, CEPSR
Speaker: Mau-Chung Frank Chang, Professor/Chairman, Electrical Engineering Department, University of California, Los Angeles

Abstract

The infamous “Terahertz Gap” represents frequency spectrum that ranges from 0.3 to 3THz (or 300 to 3000GHz). It lies between traditional microwave and infrared domains but remains “untouchable” via either electronic or photonic means. The conventional “transit-time-limited” electronic devices can hardly operate even at its lowest frequency; the “band-gap-limited” pho- tonic devices on the other hand can only operate beyond its highest fre- quency. Since wavelengths range from 1000 to 100 μm, Terahertz signals tend to behave quasi-optically and are potentially instrumental for a wide range of scientific and industrial applications. Those include high-data rate, short distance and secured wireless & wireline communications, telemetric and remote sensing based on high-resolution radar, spectrometer and im- agers for intelligent traffic/landing control, safety/security screening and bio-medical/food/drug sensing, and analysis and controls. In this talk, we will discuss fundamental & technical challenges involved in building Tera- hertz systems and progress made recently at UCLA to overcome electronic/photonic barriers for realizing highly integrated (sub)-mm-Wave and Terahertz systems.

Speaker Bio

Dr. Frank Chang is currently the Wintek Chair Professor and Chairman of the Electrical Engineering Department at UCLA. Before joining UCLA in 1997, he was the Assistant Di- rector and Department Manager of the High Speed Electronics Laboratory at the Rock- well Science Center, Thousand Oaks, California (1983-1997). Throughout his career, his research has primarily focused on developing high-speed semiconductor devices and circuits for high-frequency and mixed-signal communication, radar, interconnect and im- aging systems. He was elected to the National Academy of Engineering in 2008 and Aca- demia Sinica (Taiwan, ROC) in 2012. He is an IEEE Fellow and received the IEEE David Sarnoff Award in 2006 for developing and commercializing GaAs HBT power amplifiers for modern wireless communication systems (especially for cell phones).

Friday, October 17, 2014

Bottom-Up Self Assembly of Graphene Holds Promise for Spintronics


                                    Image: Patrick Han
http://spectrum.ieee.org/nanoclast/semiconductors/materials/bottomup-self-assembly-of-graphene-holds-promise-for-spintronic-applications
By Dexter Johnson 

Not all graphene is alike. The way in which graphene is produced determines in large measure how it can be applied. The aim, of course, has been to produce the best quality graphene in large quantities.
However, these bulk production methods come at a price, which usually involves compromising those astounding electronic properties that make graphene so attractive in the first place.
Now researchers at the University of California Los Angeles (UCLA) and Tohoku University in Japan may have found a way around these limitations by abandoning “top-down” manufacturing techniques like lithography for a bottom-up approach in which the graphene nanoribbons self assemble exactly into the desired form.
The researchers were looking for a way to produce graphene nanoribbons that have the zigzag edges that give the material a strong magnetic property, making it attractive for spintronics. Spintronics exploits the way in which the spin of particles respond to magnetic fields so that the spin is either parallel or antiparallel to the magnetic field. These two possibilities make it useful for creating a digital signal that can be used in computing.
“To make devices out of graphene, we need to control its geometric and electronic structures,” said Paul Weiss of UCLA in a press release. “Making zigzag edges does both of these simultaneously, as there are some special properties of graphene nanoribbons with zigzag edges. Having these in hand will enable us to test theoretical predictions about them, such as magnetic properties.”
The typical lithographic method for producing graphene nanoribbons with these zigzag edges resulted in too many defects in the final product for the material to be useful.
In the research, which was published in the journal ACS Nano, the team exploited the properties of a copper substrate to alter the way the graphene precursor molecules reacted to each other as they assembled into graphene nanoribbons. With this method, the researchers were able to control the length, edge configuration, and location of the nanoribbons on the substrate.
This isn’t the first time that graphene nanoribbons were produced by self-assembly, but in earlier efforts the end results were bundles of ribbons that needed to go through another process to untangle them and position them in a device.
“Previous strategies in bottom-up molecular assemblies used inert substrates, such as gold or silver, to give molecules a lot of freedom to diffuse and react on the surface,” said Patrick Han of Tohoku University in the press release. “But this also means that the way these molecules assemble is completely determined by the intermolecular forces and by the molecular chemistry. Our method opens the possibility for self-assembling single-graphene devices at desired locations, because of the length and the direction control.”

Monday, April 11, 2011

Metamaterial concepts applied to terahertz-laser waveguides

A terahertz quantum-cascade laser with a transmission-line metamaterial coupler antenna offers an intermediate step toward a zero-index laser.
11 April 2011, SPIE Newsroom. DOI: 10.1117/2.1201103.003597
Researchers have devoted considerable recent effort to development of ‘electromagnetic metamaterials.’ Such materials can be engineered to exhibit customizable or conventionally unobtainable electromagnetic properties, including propagation with near-zero or even negative refractive index (i.e., backward wave propagation). This is typically done by incorporating lumped inductive or capacitive elements (or, at optical frequencies, plasmonic or dielectric elements) on length scales that are sufficiently smaller than the wavelength so that the medium appears homogeneous. Electromagnetic metamaterials are currently being used to investigate and implement novel antenna concepts, subwavelength resonators and waveguides, superlenses that beat the diffraction limit, and even electromagnetic cloaking.
A particular challenge is coping with the absorption that accompanies the various metallic inclusions. One approach offsets these losses by incorporating a source of gain into the metamaterial structure. For example, an active photonic material can provide gain through stimulated emission of photons.1 The terahertz frequency range is particularly well suited for investigation of active photonic metamaterials, since metal is still a relatively good conductor, inductor-capacitor circuit elements can be fabricated using contact photolithography, and photonic gain is available through intersubband transitions in terahertz quantum-cascade (QC)-laser material.
Our group has proposed an approach to develop planar metamaterial waveguides that are suitable for integration with QC-laser material.2 It is adapted from the transmission-line formalism where negative and zero-index propagation can be modeled by introduction of additional lumped-element capacitance and inductance into the series and shunt branches of the transmission line (see Figure 1).3 Figure 2 shows the calculated dispersion relation for a typical balanced design. This can be readily applied to terahertz QC devices, which are typically fabricated into a double-metal waveguide that is similar in form to microstrip transmission line. Gallium arsenide (GaAs)/aluminum GaAs multiple quantum wells comprise the dielectric of the transmission line and provide amplification through stimulated emission of terahertz photons.4
 
Figure 1. (a) Schematic of a candidate quantum-cascade (QC)-laser double-metal metamaterial waveguide, where gold contacts and ground plane are indicated in yellow. (b) 1D transmission-line metamaterial obtained by incorporating both shunt and series inductors and capacitors. THz: Terahertz. GaAs: Gallium arsenide. AlGaAs: Aluminum GaAs. Cx, Lx: Capacitors, inductors (where x denotes R or L). ℏωLO: Stimulated emission energy.
 
Figure 2. Typical calculated dispersion relation for a balanced terahertz metamaterial waveguide exhibiting backward (at frequencies f < f0) and forward wave propagation at (f > f0), as well as zero-index propagation at f0.
One device proposed by our group is a metamaterial ‘zero-index laser.’ This laser cavity is designed to oscillate in a mode with a zero phase index at frequency f0 and, as such, exhibits a uniform mode in the longitudinal direction. Figure 3 shows the associated calculated electric-field pattern. This is very different from a conventional laser cavity in which the laser mode exhibits a sinusoidal standing-wave pattern and, hence, interacts nonuniformly with the gain medium. For this reason, a zero-index laser may be useful to suppress spatial-hole burning, a common phenomenon in lasers that can cause undesirable multimode oscillation. Other applications include traveling-wave metamaterial antennas that radiate with high efficiency and directivity in the forward and backward directions (depending on the exact frequency). The ability to engineer the beam and radiative coupling efficiencies would benefit terahertz QC-lasers in particular, since double-metal waveguides have notoriously poor beam patterns and coupling efficiencies.
 
Figure 3. Full-wave simulation of electric-field vectors and intensity in zero-index laser cavity oscillating at frequency f0. Note the uniformity of the electric field in the longitudinal direction.
Since the amount of gain provided by the QC-laser material is limited, the success of this approach depends on designs that minimize losses. Our full-wave electromagnetic simulations indicate that while the ohmic and radiative losses are larger than in conventional terahertz QC lasers, they are not insurmountable. As an intermediate step toward a zero-index laser, we have demonstrated that a section of metamaterial waveguide can be used as a coupling antenna when fed by the signal from an adjacent, conventional terahertz QC-laser. The metamaterial section is active—i.e., gain is available to provide amplification to the signal injected from the master oscillator—and a directional beam (in one direction) is obtained in the forward direction.
Our next step is to demonstrate backward-wave operation from these antennas and optimize the designs to reduce losses so that a zero-index laser can be realized. However, in general, use of transmission-line metamaterial concepts is useful for designing laser waveguides and resonators with engineered phase characteristics. These techniques have the potential to allow design of lasers with flexible control of spectral and radiation properties, including beam shaping and steering, wavelength tuning, and polarization control.

Benjamin S. Williams, Amir Ali Tavallaee, Philip Hon, Tatsuo Itoh
University of California at Los Angeles
Los Angeles, CA

References:
1. T. A. Klar, A. V. Kildishev, V. P. Drachev, V. M. Shalaev, Negative-index metamaterials: going optical, IEEE J. Sel. Top. Quant. Electron. 12, pp. 1106-1115, 2006.
2. A. A. Tavallaee, P. Hon, K. Mehta, T. Itoh, B. S. Williams, Zero-index terahertz quantum-cascade metamaterial lasers, IEEE J. Quant. Electron. 46, pp. 1091-1098, 2010.
3. A. Lai, C. Caloz, T. Itoh, Composite right/left-handed transmission line metamaterials, IEEE Microw. Mag., pp. 34-50, 2004.
4. B. S. Williams, Terahertz quantum cascade lasers, Nat. Photon. 1, pp. 517-524, 2007.