A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Shanhong Xia. Show all posts
Showing posts with label Shanhong Xia. Show all posts
Saturday, February 20, 2016
Abstract-Early detection of germinated wheat grains using terahertz image and chemometrics
In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h.
Wednesday, May 27, 2015
Abstract-Characterization of Wheat Varieties Using Terahertz Time-Domain Spectroscopy
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100080, China2 University of the Chinese Academy of Sciences, Beijing 100080, China3 Key Laboratory of Grain Information Processing & Control, Ministry of Education, Zhengzhou 450001, China
* Author to whom correspondence should be addressed.
Received: 19 April 2015 / Accepted: 21 May 2015 / Published: 27 May 2015
Terahertz (THz) spectroscopy and multivariate data analysis were explored to discriminate eight wheat varieties. The absorption spectra were measured using THz time-domain spectroscopy from 0.2 to 2.0 THz. Using partial least squares (PLS), a regression model for discriminating wheat varieties was developed. The coefficient of correlation in cross validation (R) and root-mean-square error of cross validation (RMSECV) were 0.985 and 1.162, respectively. In addition, interval PLS was applied to optimize the models by selecting the most appropriate regions in the spectra, improving the prediction accuracy (R = 0.992 and RMSECV = 0.967). Results demonstrate that THz spectroscopy combined with multivariate analysis can provide rapid, nondestructive discrimination of wheat varieties.
Subscribe to:
Posts (Atom)