A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Michael J. Manfra. Show all posts
Showing posts with label Michael J. Manfra. Show all posts
Monday, August 22, 2016
Abstract-Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3850.html
The collective interaction of electrons with light in a high-quality-factor cavity is expected to reveal new quantum phenomena and find applications in quantum-enabled technologies. However, combining a long electronic coherence time, a large dipole moment, and a high quality-factor has proved difficult. Here, we achieved these conditions simultaneously in a two-dimensional electron gas in a high-quality-factor terahertz cavity in a magnetic field. The vacuum Rabi splitting of cyclotron resonance exhibited a square-root dependence on the electron density, evidencing collective interaction. This splitting extended even where the detuning is larger than the resonance frequency. Furthermore, we observed a peak shift due to the normally negligible diamagnetic term in the Hamiltonian. Finally, the high-quality-factor cavity suppressed superradiant cyclotron resonance decay, revealing a narrow intrinsic linewidth of 5.6 GHz. High-quality-factor terahertz cavities will enable new experiments bridging the traditional disciplines of condensed-matter physics and cavity-based quantum optics.
Monday, July 21, 2014
Abstract-Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases
Qi Zhang, Takashi Arikawa, Eiji Kato, John L. Reno, Wei Pan, John D. Watson, Michael J. Manfra, Michael A. Zudov, Mikhail Tokman, Maria Erukhimova, Alexey Belyanin, and Junichiro Kono
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.047601
We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn’s theorem.
DOI: http://dx.doi.org/10.1103/PhysRevLett.113.047601
- Published 21 July 2014
- Received 5 May 2014
© 2014 American Physical Society
Subscribe to:
Posts (Atom)