Showing posts with label Julien Madéo. Show all posts
Showing posts with label Julien Madéo. Show all posts

Thursday, September 21, 2017

Abstract-Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo 4 O 7



Shukai Yu, C. Dhanasekhar, Venimadhav Adyam, Skylar Deckoff-Jones, Michael K. L. Man, Julien Madéo, E Laine Wong, Takaaki Harada, M. Bala Murali Krishna, Keshav M. Dani, and Diyar Talbayev


We present a study of the terahertz-frequency magnetoelectric effect in ferrimagnetic pyroelectric CaBaCo4O7 and its Ni-doped variants. The terahertz absorption spectrum of these materials consists of spin excitations and low-frequency infrared-active phonons. We studied the magnetic-field-induced changes in the terahertz refractive index and absorption in magnetic fields up to 17 T. We find that the magnetic field modulates the strength of infrared-active optical phonons near 1.2 and 1.6 THz. We use the Lorentz model of the dielectric function to analyze the measured magnetic-field dependence of the refractive index and absorption. We propose that most of the magnetoelectric effect is contributed by the optical phonons near 1.6 THz and higher frequency resonances. Our experimental results can be used to construct and validate more detailed theoretical descriptions of magnetoelectricity in CaBaCo4xNixO7.
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure

Friday, September 18, 2015

Japanese group show how femtosecond-laser ablation could close the 'terahertz gap'


Japanese group show how femtosecond-laser ablation could close the 'terahertz gap'
Sitting between infrared and microwave radiation, the terahertz (THz) part of the electromagnetic spectrum has been largely unused due to a lack of cheap ways to mass-produce THz-based devices.
Now research published in Optics Letters by the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) in Japan, suggests a solution to the 'terahertz gap' might lie in altering the microstructure of THz emission GaAs-based devices.
THz radiation can penetrate fabrics, paper, cardboard, plastics, wood, and ceramics. Many materials have a unique 'fingerprint' in the THz band allowing their easy identification with THz scanners. Moreover, THz radiation is safe for live tissues and DNA, due to its non-ionising properties. Because of these properties, many believe that  being able to exploit THz wavelengths could open up new approaches to medical imaging, detection of chemicals such as explosives, and even data communication. 
Today, however, generating THz waves is difficult since the frequency is too high for conventional radio transmitters, but too low for optical transmitters, like the majority of lasers. One of the most frequently used THz emitters is a photoconductive antenna, comprising two electric contacts and a thin film of semiconductor, often GaAs, between them. When the antenna is exposed to a short pulse from a laser, the photons excite electrons in the semiconductor, and a short burst of THz radiation is produced. Thus the energy of the laser beam is transformed into a THz electro-magnetic wave.
OIST researchers have showed that the micro-structure of the semiconductor surface plays an important role in this process. Femtosecond-laser-ablation, in which the material is exposed to ultrashort bursts of high energy, creates micrometre-scale grooves and ripples (pictured above) on the surface of GaAs. "The light gets trapped in these ripples", says Athanasios Margiolakis, a Special Research Student at OIST. Since more light is absorbed by the ablated material, the efficiency of THz emission, given a sufficiently powerful laser, increases by 65 percent.
Other properties of the material change as well. For example, ablated GaAs shows only a third of the electrical current of non-ablated GaAs. "We observe counter-intuitive phenomena," the researchers write, "One generally expects that the material showing the higher photocurrent would give the best THz emitter." They explain this phenomenon by shorter carrier lifetimes. That is, electrons in ablated samples return to non-agitated states much faster than in control samples.
Julien Madéo, part of the OIST team, says: "Femtosecond-laser ablation allows us to engineer the properties of materials and to overcome their intrinsic limitations, leading, for example, to near 100 percent photon absorption as well as broader absorption bandwidth, control of the electron concentration and lifetime". 
The researchers believe that the technique is a fast, lower-cost alternative to existing methods of manufacturing materials for THz applications.
'Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics', by Julien Madéo et al; Optics LettersVol. 40, issue 14 (2015)

Thursday, September 17, 2015

Laser ablation boosts terahertz emission


http://www.nanowerk.com/nanotechnology-news/newsid=41341.php
(Nanowerk News) From almost instantaneous wireless transfer of huge amounts of data and easy detection of explosives, weapons, or harmful gases, to safe 3-D medical imaging and new advances in spectroscopy —technologies based on terahertz (THz) radiation, the electro-magnetic band with wavelengths from 0.1 to 1 mm, can transform science fiction into reality. However, scientists and engineers still do not have cheap and efficient solutions for mass production of THz-based devices.
For years, the THz portion of the spectrum remained unused, giving rise to the term “terahertz gap”. Research, recently published in Optics Letters by the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), suggests one possible solution for this problem: a method to increase efficiency of THz emission gallium arsenide (GaAs)-based devices.
THz radiation lies between infrared and microwave radiation in the electro-magnetic spectrum. It is absorbed by water —which limits the use of THz devices in the Earth's atmosphere, laden with water vapour, to short distances—but it can penetrate fabrics, paper, cardboard, plastics, wood, and ceramics. Many materials have a unique “fingerprint”in the THz band allowing their easy identification with THz scanners. Moreover, unlike X-rays and ultraviolet light, THz radiation is safe for live tissues and DNA, due to its non-ionising properties. THz technology could be a next important breakthrough in medicine, security, chemistry, and information technology.
Generation of THz waves is difficult since the frequency is too high for conventional radio transmitters, but too low for optical transmitters, like the majority of lasers. Therefore, researchers have to come up with new innovative devices.
Athanasios Margiolakis and Bala Murali Krishna Mariserla, OIST Posdoctoral researcher, perform an experiment in Femtosecond laser laboratory
Athanasios Margiolakis and Bala Murali Krishna Mariserla, OIST Posdoctoral researcher, perform an experiment in Femtosecond laser laboratory.
One of the most frequently used THz emitters is a photoconductive antenna, comprising two electric contacts and a thin film of semiconductor, often GaAs, between them. When the antenna is exposed to a short pulse from a laser, the photons excite electrons in the semiconductor, and a short burst of THz radiation is produced. Thus the energy of the laser beam is transformed into a THz electro-magnetic wave.
OIST researchers showed that micro-structure of the semiconductor surface plays an important role in this process ("Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics"). Femtosecond-laser-ablation, in which the material is exposed to ultrashort bursts of high energy, creates micrometre-scale grooves and ripples on the surface of GaAs.
“The light gets trapped in these ripples”, says Athanasios Margiolakis, a Special Research Student at OIST. Since more light is absorbed by the ablated material, the efficiency of THz emission, given a sufficiently powerful laser, increases by 65%.
Other properties of the material change as well. For example, ablated GaAs shows only a third of the electrical current of non-ablated GaAs. “We observe counter-intuitive phenomena,”the researchers write, "One generally expects that the material showing the higher photocurrent would give the best THz emitter.” They explain this phenomenon by shorter carrier lifetimes. That is, electrons in ablated samples return to non-agitated states much faster than in control samples.
Dr Julien Madéo, one of the OIST team members, says that “femtosecond-laser ablation allows us to engineer the properties of materials and to overcome their intrinsic limitations, leading, for example, to near 100% photon absorption as well as broader absorption bandwidth, control of the electron concentration and lifetime”. This technique is a fast, lower-cost alternative to existing methods of manufacturing materials for THz applications.
Source: Okinawa Institute of Science and Technology


Read more: Laser ablation boosts terahertz emission