Showing posts with label Feng Wu. Show all posts
Showing posts with label Feng Wu. Show all posts

Wednesday, July 22, 2020

Abstract-Quasibound states in the continuum in terahertz free-standing metal complementary periodic cross-shaped resonators


We numerically and experimentally achieve quasi-bound states in the continuums (BICs) with high-Q factors in the free-standing metal complementary periodic cross-shaped resonators (CPCRs) at terahertz (THz) frequencies. Such induced quasi-BICs arises from the breaking of the mirror symmetry of CPCRs. By properly tuning the asymmetric factor, the measured Q factor of quasi-BIC can reach 102, which is lower than the simulated Q factor of 166 due to the limited system resolutions. We also simulate the electric field magnitude and vector distributions at the quasi-BICs, where the out-phase alignment between the electric dipoles is found. The sharp quasi-BICs realized in this thin free-standing metal structure may immediately boost the performance of filters and sensors in terahertz wave manipulation or biomolecular sensing.

Friday, December 21, 2018

Abstract-Terahertz Superconducting Radiometric Spectrometer in Tibet for Atmospheric Science


Sheng Li, Qijun Yao, Dong Liu, Wenying Duan, Kun Zhang, Junda Jin, Zhenhui Lin, Feng Wu, Jinping Yang, Wei Miao, Shengcai Shi

https://link.springer.com/article/10.1007/s10762-018-0557-4

Terahertz superconducting radiometric spectrometer (TSRS), as one of seven instruments of the atmospheric profiling synthetic observation system (APSOS) project, was completed in the middle of 2017 after 5 years of development. It is a dual-band heterodyne receiver system based on high sensitive superconductor-insulator-superconductor (SIS) mixers which cover the frequency range of 180 to 380 GHz. With fast Fourier transform spectrometer (FFTS) of each band, real-time observation of 2 GHz bandwidth of high spectral resolution atmospheric molecular emission lines has been demonstrated. TSRS has been deployed at Yangbajing site, which stands on the Qinghai-Tibet Plateau at an altitude of 4300 m in southwestern China, since October 2017. It has been worked in a preliminary observation phase along with other active observation equipment of APSOS. Since then, ozone emission lines around 236 GHz and 358 GHz have been monitored simultaneously. Achieved data will be used to retrieve the in situ vertical distribution of ozone and its movement among different layers of the atmosphere