We theoretically and numerically demonstrate an actively tunable slow light in a hybrid metal-graphene metamaterial in the terahertz (THz) regime. In the unit cell, the near field coupling between the metallic elements including the bright cut wire resonator and the dark double split-ring resonator gives rises to a pronounced transmission peak. By positioning a monolayer graphene under the dark mode resonator, an active modulation of the near field coupling is achieved via shifting the Fermi level of graphene. The physical origin can be attributed to the variation in the damping rate of the dark mode resonator arising from the conductive effect of graphene. Accompanied with the actively tunable near filed coupling effect is the dynamically controllable phase dispersion, allowing for the highly tunable slow light effect. This work offers an alternative way to design compact slow light devices in the THz regime for future optical signal processing applications.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Chen Xu. Show all posts
Showing posts with label Chen Xu. Show all posts
Wednesday, June 27, 2018
Abstract-Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial
Sunday, May 28, 2017
Abstract-Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials
(Submitted on 25 May 2017)
https://arxiv.org/abs/1705.09082Metamaterial analogues of electromagnetically induced transparency (EIT) have been intensively studied and widely employed for slow light and enhanced nonlinear effects. In particular, the active modulation of the EIT analogue and well-controlled group delay in metamaterials have shown great prospects in optical communication networks. Previous studies have focused on the optical control of the EIT analogue by integrating the photoactive materials into the unit cell, however, the response time is limited by the recovery time of the excited carriers in these bulk materials. Graphene has recently emerged as an exceptional optoelectronic material. It shows an ultrafast relaxation time on the order of picosecond and its conductivity can be tuned via manipulating the Fermi energy. Here we integrate a monolayer graphene into metal-based terahertz (THz) metamaterials, and realize a complete modulation in the resonance strength of the EIT analogue at the accessible Fermi energy. The physical mechanism lies in the active tuning the damping rate of the dark mode resonator through the recombination effect of the conductive graphene. Note that the monolayer morphology in our work is easier to fabricate and manipulate than isolated fashion. This work presents a novel modulation strategy of the EIT analogue in the hybrid metamaterials, and pave the way towards designing very compact slow light devices to meet future demand of ultrafast optical signal processing.
Monday, April 17, 2017
Abstract-Strong interaction between graphene layer and Fano resonance in terahertz metamaterials
Shuyuan Xiao1, Tao Wang1, Xiaoyun Jiang1, Xicheng Yan1, Le Cheng1, Boyun Wang2 and Chen Xu3
Published 13 April 2017 • © 2017 IOP Publishing Ltd
Graphene has emerged as a promising building block in modern optics and optoelectronics due to its novel optical and electrical properties. In the mid-infrared and terahertz (THz) regime, graphene behaves like metals and supports surface plasmon resonances (SPRs). Moreover, the continuously tunable conductivity of graphene enables active SPRs and gives rise to a range of active applications. However, the interaction between graphene and metal-based resonant metamaterials has not been fully understood. In this work, a simulation investigation on the interaction between the graphene layer and THz resonances supported by the two-gap split ring metamaterials is systematically conducted. The simulation results show that the graphene layer can substantially reduce the Fano resonance and even switch it off, while leaving the dipole resonance nearly unaffected, which is well explained with the high conductivity of graphene. With the manipulation of graphene conductivity via altering its Fermi energy or layer number, the amplitude of the Fano resonance can be modulated. The tunable Fano resonance here together with the underlying physical mechanism can be strategically important in designing active metal-graphene hybrid metamaterials. In addition, the 'sensitivity' to the graphene layer of the Fano resonance is also highly appreciated in the field of ultrasensitive sensing, where the novel physical mechanism can be employed in sensing other graphene-like two-dimensional materials or biomolecules with the high conductivity.
Subscribe to:
Posts (Atom)