A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Thursday, July 6, 2017
Abstract-Polarization-resolved terahertz third-harmonic generation in a single-crystal NbB superconductor: Dominance of the Higgs mode beyond the BCS approximation
Ryusuke Matsunaga, Naoto Tsuji, Kazumasa Makise, Hirotaka Terai, Hideo Aoki, and Ryo Shimano
https://journals.aps.org/prb/accepted/06073Oa1P3bEc21dc38d310718d5f15931783f2ce
Recent advances in time-domain terahertz (THz) spectroscopy have unveiled that resonantly-enhanced strong THz third-harmonic generation (THG) mediated by the collective Higgs amplitude mode occurs in }{{s}}{-wave superconductors, where charge-density fluctuations (CDF) have been shown to also contribute to the nonlinear third-order susceptibility. It has been theoretically proposed that the nonlinear responses of Higgs and CDF exhibit essentially different polarization dependences. Here we experimentally discriminate the two contributions by polarization-resolved intense THz transmission spectroscopy for a single-crystal NbN film. The result shows that the resonant THG in the transmitted light always appears in the polarization parallel to that of the incident light with no appreciable polarization-angle dependence relative to the crystal axis. When we compare this with the theoretical calculation here with the BCS approximation and the dynamical mean-field theory for a model of NbN constructed from first principles, the experimental result strongly indicates that the Higgs mode rather than the CDF dominates the THG resonance in NbN. A possible mechanism for this is the retardation effect in the phonon-mediated pairing interaction beyond BCS.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment