A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Friday, December 11, 2015
Abstract-Terahertz Coded Aperture Mask using a Vanadium Dioxide Bowtie Antenna Array
Souheil Nadri, Rebecca Percy, Lin Kittiwatanakul, Alex Arsenovic, Jiwei Lu, Stu Wolf, Robert M. Weikle II
http://arxiv.org/abs/1512.02697
Terahertz imaging systems have received substantial attention from the scientific community for their use in astronomy, spectroscopy, plasma diagnostics and security. One approach to designing such systems is to use focal plane arrays. Although the principle of these systems is straightforward, realizing practical architectures has proven deceptively difficult. A different approach to imaging consists of spatially encoding the incoming flux of electromagnetic energy prior to detection using a reconfigurable mask. This technique is referred to as coded aperture or Hadamard imaging. This paper details the design, fabrication and testing of a prototype coded aperture mask operating at WR 1.5 (500 to 750 GHz) that uses the switching properties of vanadium dioxide (VO2). The reconfigurable mask consists of bowtie antennas with vanadium dioxide VO2 elements at the feed points. From the symmetry, a unit cell of the array can be represented by an equivalent waveguide whose dimensions limit the maximum operating frequency. In this design, the cutoff frequency of the unit cell is 640 GHz. The VO2 devices are grown using reactive-biased target ion beam deposition. A reflection coefficient (S11) measurement of the mask in the WR 1.5 (500 to 750 GHz) band is conducted. The results are compared with circuit models and found to be in good agreement. A simulation of the transmission response of the mask is conducted and shows a transmission modulation of up to 28 dB. This project is a first step towards the development of a full coded aperture imaging system operating at WR 1.5 with VO2 as the mask switching element.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment