- Xiangjun Li,
- Jian Song
- , John X. J. Zhang
- http://link.springer.com/article/10.1007/s11468-015-0147-4
- We design terahertz (THz) surface-plasmon-resonance (SPR) sensors using a ferroelectric polyvinylidene fluoride (PVDF) thin layer for biological sensing. The reflectivity properties based on SPR are described using transfer matrix method (TMM) and numerically simulated using finite-difference time domain (FDTD) method. The sensing characteristics of the structure are systematically analyzed through the examination of the reflectivity spectrum. The results reveal that the pronounced SPR resonance peak has quasi-linear relationship with the refractive index variation of the material under investigation. Through analyzing and optimizing the structural parameters of the THz SPR sensor, we achieved the theoretical value of the refractive index detection sensitivity as high as 0.393 THz/unit change of refractive index (RIU) for a 20-μm-thick liquid sample with a 10-μm PVDF layer. This work shows great promise toward realizing a THz SPR sensor with high sensitivity for identifying the signatures of biological fluid sample.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Thursday, December 17, 2015
Abstract-Integrated Terahertz Surface Plasmon Resonance on Polyvinylidene Fluoride Layer for the Profiling of Fluid Reflectance Spectra
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment