-
- Nature Photonics
- doi:10.1038/nphoton.2014.139
- Received
- Accepted
- Published online
Imaging at long wavelengths, for example at terahertz and millimetre-wave frequencies1, is a highly sought-after goal of researchers2, 3 because of the great potential for applications ranging from security screening4 and skin cancer detection5 to all-weather navigation6 and biodetection7. Here, we design, fabricate and demonstrate active metamaterials that function as real-time tunable, spectrally sensitive spatial masks for terahertz imaging with only a single-pixel detector. A modulation technique permits imaging with negative mask values, which is typically difficult to achieve with intensity-based components. We demonstrate compressive techniques allowing the acquisition of high-frame-rate, high-fidelity images. Our system is all solid-state with no moving parts, yields improved signal-to-noise ratios over standard raster-scanning techniques8, and uses a source orders of magnitude lower in power than conventional set-ups9. The demonstrated imaging system establishes a new path for terahertz imaging that is distinct from existing focal-plane-array-based cameras.
No comments:
Post a Comment