A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Tuesday, July 7, 2020
Abstract-Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial
Mengqiang Zou, Miyong Su, Hua Yu
https://www.sciencedirect.com/science/article/abs/pii/S0925346720304055
We propose a reflective terahertz metamaterial linear polarization converter, consisting of three layers: an array of metallic symmetrical anchor-shaped resonators, poly tetra fluoroethylene (PTFE) as a low loss dielectric layer, and a metal surface ground plane. The simulation results show that the proposed metamaterial can convert the linearly polarized waves into the cross-polarized waves with a polarization conversion ratio (PCR) of above 93% in the frequency range of 1.21–2.83 THz and the relative bandwidth is as high as 80.2%. The proposed metamaterial is valid for a wide range of incident angles, and the average polarization conversion ratio remains 93% even though the incident angle reaches 45°. Additionally, we theoretically analyzed the conversion mechanism of achieving a high-efficiency linear polarization conversion in a wide frequency range by calculating the polarization angle and elliptical angle of the reflected terahertz waves. The experiment results using the terahertz time domain spectroscopy (THz-TDS) consist well with the simulation results. Our design will provide an important reference for the practical applications of the metamaterials in polarization manipulation.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.