A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Saturday, November 9, 2019
Abstract-Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers
Kazuue Fujita, Shohei Hayashi, Akio Ito, Masahiro Hitaka, Tatsuo Dougakiuchi
https://www.degruyter.com/view/j/nanoph.ahead-of-print/nanoph-2019-0238/nanoph-2019-0238.xml
Terahertz quantum cascade laser sources with intra-cavity non-linear frequency mixing are the first room-temperature electrically pumped monolithic semiconductor sources that operate in the 1.2–5.9 THz spectral range. However, high performance in low-frequency range is difficult because converted terahertz waves suffer from significantly high absorption in waveguides. Here, we report a sub-terahertz electrically pumped monolithic semiconductor laser. This sub-terahertz source is based on a high-performance, long-wavelength (λ ≈ 13.7 μm) quantum cascade laser in which high-efficiency terahertz generation occurs. The device produces peak output power of 11 μW within the 615–788 GHz frequency range at room temperature. Additionally, a source emitting at 1.5 THz provides peak output power of 287 μW at 110 K. The generated terahertz radiation of <2 THz is mostly attributable to the optical rectification process in long-wavelength infrared quantum cascade lasers.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.