A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Saturday, March 2, 2019
Abstract-Ultra-compact Spatial Terahertz Switch Based on Graphene Plasmonic-Coupled Waveguide
Mehdi Dehghan Mohammad, Kazem Moravvej-Farshi, Mohsen Ghaffari-Miab Masoud, Jabbari Ghafar Darvish
https://link.springer.com/article/10.1007/s11468-019-00921-0
We are proposing graphene (G)-based multilayered plasmonic spatial switch, operating at 10 THz. It is composed of hBN/Ag/hBN/G/hBN/G/hBN/SiO2/p+-Si multilayers. When a 10-THz transverse magnetic (TM)-polarized signal is normally incident upon the structure top surface, the nanoaperture devised in the Ag nanolayer, acting as a grating, excites surface plasmons at the top graphene micro-ribbons/hBN interface. These surface plasmons depending on the graphenes chemical potentials can be coupled to the lower-right or left graphene micro-ribbons and continue to propagate laterally towards the corresponding output port. Numerical simulations show that a change of ∆VG ≈ ± 2.7 V in the voltage, applied to the gated micro-ribbons, can modulate their chemical potentials sufficiently to switch the right (left) output port from ON (OFF) to OFF(ON) and vice versa. Besides its low power consumption, the switch ultra-small dimensions make it a potential spatial router suitable for THz-integrated circuit applications.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.