Recently, computational sampling methods have been implemented to spatially characterize terahertz (THz) fields. Previous methods usually rely on either specialized THz devices such as THz spatial light modulators, or complicated systems requiring assistance from photon-excited free-carriers with high-speed synchronization among multiple optical beams. Here, by spatially encoding an 800 nm near-infrared (NIR) probe beam through the use of an optical SLM, we demonstrate a simple sampling approach that can probe THz fields with a single-pixel camera. This design does not require any dedicated THz devices, semiconductors or nanofilms to modulate THz fields. Through the use of computational algorithms, we successfully measure 128× 128 field distributions with a 62μm transverse spatial resolution, more than 15 times smaller than the central wavelength of the THz signal (940μm ). Benefitting from the non-invasive nature of THz radiation and sub-wavelength resolution of our system, this simple approach can be used in applications such as biomedical sensing, inspection of flaws. in industrial products, and so on.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
No comments:
Post a Comment
Please share your thoughts. Leave a comment.