A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Wednesday, December 26, 2018
Abstract-Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens
Daniel Headland, Withawat Withayachumnankul, Ryoumei Yamada, Masayuki Fujita, Tadao Nagatsuma,
https://aip.scitation.org/doi/abs/10.1063/1.5060631
Recent years have seen the emergence of efficient, general-purpose terahertz photonic-crystal waveguides etched from high-resistivity silicon. Systems founded upon this platform will require antennas in order to interface with free-space fields. Multi-beam antennas are desirable to this end, as they are capable of interacting with a number of distinct directions simultaneously. Such functionality can be provided by Luneburg lenses, which we aim to incorporate with the terahertz photonic crystal waveguide. A Luneburg lens requires a precisely defined gradient-index, which we realize using effective medium techniques that are implemented with micro-scale etching of silicon. Thus, the photonic crystal waveguides can be integrated directly with the Luneburg lens and fabricated together from the same silicon wafer. In this way, we develop a planar Luneburg-lens antenna with a diameter of 17 mm and seven evenly spaced ports that cover a 120° field of view. Numerical and experimental characterization confirm that the antenna functions as intended over its operation bandwidth, which spans from 320 to 390 GHz. The Luneburg-lens antenna is subsequently deployed in a demonstration of terahertz communications over a short distance. The device may therefore find applications in terahertz communications, where multiple point-to-point links can be sustained by a given transceiver node. This form of terahertz beam control may also be useful for short-range radar that monitors several directions simultaneously.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.