A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Tuesday, October 2, 2018
Abstract-Terahertz rectifier exploiting electric field-induced hot-carrier effect in asymmetric nano-electrode
Kiwon Moon, Jun-Hwan Shin, Il-Min Lee, Dong Woo Park, Eui Su Lee and Kyung Hyun Park,
http://iopscience.iop.org/article/10.1088/1361-6528/aae130/meta
Rectifiers have been used to detect electromagnetic waves with very low photon energies. In these rectifying devices, different methods have been utilized, such as adjusting the bandgap and the doping profile, or utilizing the contact potential of the metal–semiconductor junction to produce current flow depending on the direction of the electric field. In this paper, it is shown that the asymmetric application of nano-electrodes to a metal–semiconductor–metal (MSM) structure can produce such rectification characteristics, and a terahertz (THz) wave detector based on the nano-MSM structure is proposed. Integrated with a receiving antenna, the fabricated device detects THz radiation up to a frequency of 1.5 THz with responsivity and noise equivalent power of 10.8 V/W and respectively, estimated at 0.3 THz. The unidirectional current flow is attributed to the thermionic emission of hot carriers accelerated by the locally enhanced THz field at the sharp end of the nano-electrode. This work not only demonstrates a new type of THz detector but also proposes a method for manipulating ultrafast charge-carrier dynamics through the field enhancement of the nano-electrode, which can be applied to ultrafast photonic and electronic devices.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.