A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Sunday, July 29, 2018
Abstract-Simultaneous Generation of Two Orthogonally Polarized Terahertz Waves by Stimulated Polariton Scattering with a Periodically Poled LiNbO3 Crystal
Zhongyang Li, Silei Wang, Mengtao Wang, Bin Yuan, Pibin Bing,
http://www.mdpi.com/2073-4352/8/8/304
We present a theoretical investigation of the simultaneous generation of two orthogonally polarized terahertz (THz) waves by stimulated polariton scattering (SPS) with a periodically poled LiNbO3 (PPLN) crystal. The two orthogonally polarized THz waves are generated from SPS with A1 and E symmetric transverse optical (TO) modes in a LiNbO3 crystal, respectively. The parallel polarized THz wave is generated from A1 symmetric TO modes with type-0 phase-matching of e = e + e, and the perpendicular polarized THz wave is generated from E symmetric TO modes with type-I phase-matching of e = o + o. The two types of phase-matching of e = e + eand e = o + o can be almost satisfied simultaneously by accurately selecting the poling period of the PPLN crystal. We calculate the photon flux density of the two orthogonally polarized THz waves by solving the coupled wave equations. The calculation results indicate that the two orthogonally polarized THz waves can be efficiently generated, and the relative intensities between the two orthogonally polarized THz waves can be modulated.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.