Pages- Terahertz Imaging & Detection

Thursday, April 12, 2018

Abstract-Segmented terahertz electron accelerator and manipulator (STEAM)


Dongfang Zhang, Arya Fallahi, Michael Hemmer, Xiaojun Wu, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis, Franz X. Kärtner

https://www.nature.com/articles/s41566-018-0138-z

Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radiofrequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the six-dimensional phase space of ultrashort electron bunches. With this single device, powered by few-microjoule, single-cycle, 0.3 THz pulses, we demonstrate record terahertz acceleration of >30 keV, streaking with <10 fs resolution, focusing with >2 kT m–1 strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of terahertz-based electron accelerators, manipulators and diagnostic tools, enabling science beyond current resolution frontiers with transformative impact.

No comments:

Post a Comment

Please share your thoughts. Leave a comment.