Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Saturday, April 14, 2018
Abstract-Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction
Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.