Haishun Liu, Zhenwei Zhang, Xin Zhang, Yuping Yang, Zhuoyong Zhang, Xiangyi Liu, Fan Wang, Yiding Han, Cunlin Zhang
https://ieeexplore.ieee.org/document/8333778/
Terahertz time-domain spectroscopy (THz-TDS) combining with chemometrics methods was proposed for the identification of hepatic tumors. Two linear compression methods, principle component analysis and locality preserving projections (LPPs), and a nonlinear method, Isomap, were used to reduce the dimensionality of the measured dataset. Comparing two-dimensional (2-D) data reduced by these three dimensionality reduction techniques, only 2-D Isomap plot could separate the distances between two classes for the THz time-domain data and LPP had capacity of distinguishing two types of samples building on frequency-domain data. The best classification accuracies from 2-D time-domain data were 99.81±0.30% and 99.69±0.61% given by Isomap probabilistic neural network (PNN) and Isomap support vector machine (SVM), respectively, while the best classification results of 2-D frequency-domain data were 100.00±0.00% , 99.75±0.32% provided by LPP-PNN, LPP-SVM. The results showed that Isomap and LPP are appropriate techniques to reflect the nonlinear manifold of the THz data. The THz technology either in time-domain or frequency-domain coupled with Isomap-PNN or LPP-PNN could offer a potential procedure to identify hepatic tumors.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.