A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Saturday, February 17, 2018
Abstract-Departure from BCS response in photoexcited superconducting NbN films observed by terahertz spectroscopy
M. Šindler, C. Kadlec, P. Kužel, K. Ilin, M. Siegel, and H. Němec
We investigate time-resolved terahertz conductivity of thin superconducting NbN films with various thicknesses upon their excitation by intense femtosecond laser pulses. The recovery dynamics following a complete destruction of the superconducting state occurs via a growth of superconducting islands in the normal-state environment. This is in contrast with previous observations of the recovery upon strong-field terahertz excitation [R. Matsunaga and R. Shimano, Phys. Rev. Lett.109, 187002 (2012)]. We observe that the density of electronic states in the superconducting islands deviates from the BCS theory predictions on a subnanosecond time scale, while equilibrium terahertz conductivity spectra confirm the standard BCS behavior in the ground state.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.