A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Wednesday, October 11, 2017
Abstract-Materials for Terahertz Engineering
Roger Lewis
https://www.springerprofessional.de/materials-for-terahertz-engineering/15108408
Metals reflect, plastics transmit, and water absorbs terahertz-frequency electromagnetic radiation. Such diverse responses open up a vast range of applications for terahertz materials spanning art, science, engineering, and medicine. The three main components of terahertz devices are sources, detectors, and the intervening optics. Sources include solid-state emitters, typically involving in their operation either the lattice (nonlinear optics) or the charge carriers (transient dipoles). Quantum cascade lasers, built of multiple semiconductor layers, represent a rapidly developing solid-state terahertz source. Detectors typically depend on either the crystal lattice (electro-optical detection) or the charge carrier reservoir (electronic detection) being sensitive to terahertz radiation. Terahertz components encompass metal-coated mirrors, plastic (machined, molded, or three-dimensional (3-D) printed) lenses, and waveguides, filters, and polarizers of many different materials and designs. An emerging class of components are the terahertz metamaterials .
No comments:
Post a Comment
Please share your thoughts. Leave a comment.