A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Tuesday, July 25, 2017
Abstract-Crystallization caught in the act with terahertz spectroscopy: non-classical pathway for L-(+)-tartaric acid
http://onlinelibrary.wiley.com/doi/10.1002/chem.201702218/abstract
Crystal formation is a highly debated problem. We show that the crystallization of L-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation. This indicates the recurrence of water molecules which are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz that can be assigned to a natural vibration of large hydrated aggregates vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. Our results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.