A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Monday, August 22, 2016
Abstract-Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3850.html
The collective interaction of electrons with light in a high-quality-factor cavity is expected to reveal new quantum phenomena and find applications in quantum-enabled technologies. However, combining a long electronic coherence time, a large dipole moment, and a high quality-factor has proved difficult. Here, we achieved these conditions simultaneously in a two-dimensional electron gas in a high-quality-factor terahertz cavity in a magnetic field. The vacuum Rabi splitting of cyclotron resonance exhibited a square-root dependence on the electron density, evidencing collective interaction. This splitting extended even where the detuning is larger than the resonance frequency. Furthermore, we observed a peak shift due to the normally negligible diamagnetic term in the Hamiltonian. Finally, the high-quality-factor cavity suppressed superradiant cyclotron resonance decay, revealing a narrow intrinsic linewidth of 5.6 GHz. High-quality-factor terahertz cavities will enable new experiments bridging the traditional disciplines of condensed-matter physics and cavity-based quantum optics.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.