Pages- Terahertz Imaging & Detection

Tuesday, June 28, 2016

Abstract-Mid-infrared-pumped quantum cascade structure for high-sensitive terahertz detection



YAN XIE, 1 NING YANG, 1,2 SUQING DUAN, 1 AND WEIDONG CHU1,3 1

Institute of Applied Physics and Computational Mathematics, P.O. Box 8009(28), 100088, Beijing, China
 2yang_ning@iapcm.ac.cn 3chu_weidong@iapcm.ac.cn

Abstract: Based on multiple quantum wells, we design a pumping-detection quantum cascade structure for the detection of terahertz (THz) radiation. In the structure, carriers are first pumped by a mid-infrared (MIR) laser to an excited state, to get enough energy space for the following fast longitudinal optical (LO) phonon extraction. Within the LO-phonon extraction stair, an absorption well is designed for THz detection. Due to the establishment of LO-phonon stair extractor, carriers transport between quantum wells in picosecond range and a high responsivity for THz absorption can be obtained. We also find that doping in both MIR active well and extractor region is significant for high-speed response of the THz detection. Our design is expected to extend the high-sensitive detection of a quantum cascade photodetector from middle wave of MIR to THz region.
© 2016 Optical Society of America

 OCIS codes: (040.4200)
 Multiple quantum well; (040.5160) Photodetectors; (040.2235) Far infrared or terahertz.

 References and links

1. L. Gendron, C. Koeniguer, and V. Berger, “Quantum cascade photodetector," Appl. Phys. Lett. 85(14), 2824–2826 (2004).
 2. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, “New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices," Appl. Phys. Lett. 50(16), 1092–1094 (1987).
3. M. Graf, N. Hoyler, M. Giovannini, J. Faist, and D. Hofstetter, “InP-based quantum cascade detectors in the mid-infrared," Appl. Phys. Lett. 88(24), 241118 (2006).
4. D. Hofstetter, M. Graf, T. Aellen, J. Faist, L. Hvozdara, and S. Blaser, “23 GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35 μm," Appl. Phys. Lett. 89(6), 061119 (2006).
 5. F. R. Giorgetta, E. Baumann, M. Graf, L. Ajili, N. Hoyler, M. Giovannini, J. Faist, D. Hofstetter, P. Krötz, and G. Sonnabend, “16.5 μm quantum cascade detector using miniband transport," Appl. Phys. Lett. 90(23), 231111 (2007).
 6. D. Hofstetter, F. R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Köhler, “Midinfrared quantum cascade detector with a spectrally broad response," Appl. Phys. Lett. 93(22), 221106 (2008).
 7. A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, X. Marcadet, and V. Berger, “Quantum cascade detectors for very long wave infrared detection," Appl. Phys. Lett. 96(17), 172101 (2010).
8. F. R. Giorgetta, E. Baumann, D. Hofstetter, C. Manz, Q. Yang, K. Köhler, and M. Graf, “InGaAs/AlAsSb quantum cascade detectors operating in the near infrared," Appl. Phys. Lett. 91(11), 111115 (2007).

 9. A. Vardi, G. Bahir, F. Guillot, C. Bougerol, E. Monroy, S. E. Schacham, M. Tchernycheva, and F. H. Julien, “Near infrared quantum cascade detector in GaN/AlGaN/AlN heterostructures," Appl. Phys. Lett. 92(1), 011112 (2008).

No comments:

Post a Comment

Please share your thoughts. Leave a comment.