A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Monday, January 25, 2016
Abstract-Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material
Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c–axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c–axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.