A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Wednesday, December 2, 2015
Abstract-Terahertz-bandwidth photonic temporal differentiator based on a silicon-on-isolator directional coupler.
Huang TL, Zheng AL, Dong JJ, Gao DS, Zhang XL.
http://www.ncbi.nlm.nih.gov/pubmed/26625064
We experimentally demonstrate a terahertz-bandwidth photonic differentiator employing a silicon-on-insulator directional coupler. The integrated waveguide coupler with two identical paralleled strip waveguides achieves a first-order differentiator when full energy coupling is met from one waveguide to another. The integrated waveguide coupler can offer different operation bandwidths by changing the length and gap of the strip waveguides. Due to the large 3 dB bandwidth of the directional coupler, we implement the first differentiator with an operation bandwidth of 1.25 THz. The performance of this photonic differentiator is tested using Gaussian-like pulses with a pulsewidth of 2.8 ps, 4 ps, 6 ps, 8 ps, and 10 ps, respectively. The differentiation processing errors and relative energy efficiency are also discussed. This silicon chip may have potential applications in integrated photonic computing circuits with sub-picosecond pulses.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.