http://link.springer.com/article/10.1007%2Fs10762-014-0067-y
Terahertz time-domain attenuated total reflection spectroscopy, in combination with a two-interface model, is used to determine the complex dielectric constants of cultured human cancer cells (DLD-1, HEK293 and HeLa). Picosecond and sub-picosecond water dynamics are dominant in the measured complex dielectric constants of these cells. We demonstrate that dielectric responses below 1.0 THz best characterize the particular water dynamics of cancer cells when compared with extracellular water. Debye-Lorentz fitting revealed that this is due to a significantly attenuated slow relaxation mode and enhanced fast relaxation mode of the water in these cancer cells. These findings could lead to a new procedure to digitally evaluate cellular activities or functions, in terms of intracellular water dynamics, and remove the veil from the mysterious intracellular milieu.
Terahertz time-domain attenuated total reflection spectroscopy, in combination with a two-interface model, is used to determine the complex dielectric constants of cultured human cancer cells (DLD-1, HEK293 and HeLa). Picosecond and sub-picosecond water dynamics are dominant in the measured complex dielectric constants of these cells. We demonstrate that dielectric responses below 1.0 THz best characterize the particular water dynamics of cancer cells when compared with extracellular water. Debye-Lorentz fitting revealed that this is due to a significantly attenuated slow relaxation mode and enhanced fast relaxation mode of the water in these cancer cells. These findings could lead to a new procedure to digitally evaluate cellular activities or functions, in terms of intracellular water dynamics, and remove the veil from the mysterious intracellular milieu.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.