A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Pages- Terahertz Imaging & Detection
▼
Thursday, October 3, 2013
Abstract-Photocurrent-based detection of Terahertz radiation in graphene
http://arxiv.org/abs/1310.0619 Andrea Tomadin, Alessandro Tredicucci, Vittorio Pellegrini, Miriam S. Vitiello, Marco Polini Graphene is a promising candidate for the development of detectors of Terahertz (THz) radiation. A well-known detection scheme due to Dyakonov and Shur exploits the confinement of plasma waves in a field-effect transistor (FET), whereby a dc photovoltage is generated in response to a THz field. This scheme has already been experimentally studied in a graphene FET [L. Vicarelli et al., Nature Mat. 11, 865 (2012)]. In the quest for devices with a better signal-to-noise ratio, we theoretically investigate a plasma-wave photodetector in which a dc photocurrent is generated in a graphene FET. The rectified current features a peculiar change of sign when the frequency of the incoming radiation matches an even multiple of the fundamental frequency of plasma waves in the FET channel. The noise equivalent power per unit bandwidth of our device is shown to be much smaller than that of a Dyakonov-Shur detector in a wide spectral range.
No comments:
Post a Comment
Please share your thoughts. Leave a comment.