A fabrication process is reported for prototype emitters of THz radiation, which operate cryogenically, and should provide a fast, stable blackbody source suitable for characterization of THz devices. The fabrication has been demonstrated and, at the time of this reporting, testing was underway. The emitter is similar to a monolithic silicon bolometer in design, using both a low-noise thermometer and a heater element on a thermally isolated stage. An impedance-matched, high-emissivity coat ing is also integrated to tune the blackbody properties. This emitter is designed to emit a precise amount of power as a blackbody spectrum centered on terahertz frequencies. The emission is a function of the blackbody temperature. An integrated resistive heater and thermometer system can control the temperature of the blackbody with greater precision than previous incarnations of calibration sources that relied on blackbody emission. The emitter is fabricated using a silicon- on-insulator substrate wafer. The buried oxide is chosen to be less than 1 micron thick, and the silicon device thickness is 1-2 microns. Layers of phosphorus compensated with boron are implanted into and diffused throughout the full thickness of the silicon device layer to create the thermometer and heater components. Degenerately doped wiring is implanted to connect the devices to wire-bondable contact pads at the edge of the emitter chip. Then the device is micromachined to remove the thick-handle silicon behind the thermometer and heater components, and to thermally isolate it on a silicon membrane. An impedance- matched emissive coating (ion assisted evaporated Bi) is applied to the back of the membrane to enable high-efficiency emission of the blackbody spectrum. |
|
No comments:
Post a Comment
Please share your thoughts. Leave a comment.