Monday, February 8, 2016

Abstract-Possible light-induced superconductivity in K3C60 at high temperature

The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects such as the optical enhancement of superconductivity1. Nonlinear excitation23 of certain phonons in bilayer copper oxides was recently shown to induce superconducting-like optical properties at temperatures far greater than the superconducting transition temperature, Tc(refs 456). This effect was accompanied by the disruption of competing charge-density-wave correlations78, which explained some but not all of the experimental results. Here we report a similar phenomenon in a very different compound, K3C60. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. These same signatures are observed at equilibrium when cooling metallic K3C60 below Tc (20 kelvin). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this as a possible explanation of our results.

No comments: